aggTrees - Aggregation Trees
Nonparametric data-driven approach to discovering heterogeneous subgroups in a selection-on-observables framework. 'aggTrees' allows researchers to assess whether there exists relevant heterogeneity in treatment effects by generating a sequence of optimal groupings, one for each level of granularity. For each grouping, we obtain point estimation and inference about the group average treatment effects. Please reference the use as Di Francesco (2024) <doi:10.48550/arXiv.2410.11408>.
Last updated 26 days ago
4.60 score 4 scripts 383 downloadsocf - Ordered Correlation Forest
Machine learning estimator specifically optimized for predictive modeling of ordered non-numeric outcomes. 'ocf' provides forest-based estimation of the conditional choice probabilities and the covariates’ marginal effects. Under an "honesty" condition, the estimates are consistent and asymptotically normal and standard errors can be obtained by leveraging the weight-based representation of the random forest predictions. Please reference the use as Di Francesco (2025) <doi:10.1080/07474938.2024.2429596>.
Last updated 13 days ago
cpp
3.95 score 1 dependents 5 scripts 343 downloads