Package: aggTrees 2.1.0

aggTrees: Aggregation Trees

Nonparametric data-driven approach to discovering heterogeneous subgroups in a selection-on-observables framework. 'aggTrees' allows researchers to assess whether there exists relevant heterogeneity in treatment effects by generating a sequence of optimal groupings, one for each level of granularity. For each grouping, we obtain point estimation and inference about the group average treatment effects. Please reference the use as Di Francesco (2024) <doi:10.48550/arXiv.2410.11408>.

Authors:Riccardo Di Francesco [aut, cre, cph]

aggTrees_2.1.0.tar.gz
aggTrees_2.1.0.zip(r-4.5)aggTrees_2.1.0.zip(r-4.4)aggTrees_2.1.0.zip(r-4.3)
aggTrees_2.1.0.tgz(r-4.5-any)aggTrees_2.1.0.tgz(r-4.4-any)aggTrees_2.1.0.tgz(r-4.3-any)
aggTrees_2.1.0.tar.gz(r-4.5-noble)aggTrees_2.1.0.tar.gz(r-4.4-noble)
aggTrees_2.1.0.tgz(r-4.4-emscripten)aggTrees_2.1.0.tgz(r-4.3-emscripten)
aggTrees.pdf |aggTrees.html
aggTrees/json (API)
NEWS

# Install 'aggTrees' in R:
install.packages('aggTrees', repos = c('https://riccardo-df.r-universe.dev', 'https://cloud.r-project.org'))

Bug tracker:https://github.com/riccardo-df/aggtrees/issues

Pkgdown site:https://riccardo-df.github.io

On CRAN:

Conda:

4.60 score 4 scripts 381 downloads 13 exports 106 dependencies

Last updated 2 months agofrom:aab4800138. Checks:9 OK. Indexed: yes.

TargetResultLatest binary
Doc / VignettesOKMar 17 2025
R-4.5-winOKMar 17 2025
R-4.5-macOKMar 17 2025
R-4.5-linuxOKMar 17 2025
R-4.4-winOKMar 17 2025
R-4.4-macOKMar 17 2025
R-4.4-linuxOKMar 17 2025
R-4.3-winOKMar 17 2025
R-4.3-macOKMar 17 2025

Exports:avg_characteristics_rpartbalance_measuresbuild_aggtreecausal_ols_rpartdr_scoresestimate_rpartexpand_dfget_leavesinference_aggtreeleaf_membershipnode_membershipsample_splitsubtree

Dependencies:abindbackportsbootbroomcarcarDatacaretclasscliclockcodetoolscolorspacecowplotcpp11data.tableDerivdiagramDiceKrigingdigestdoBydplyre1071estimatrfansifarverforeachFormulafuturefuture.applygenericsggplot2globalsgluegowergrfgtablehardhatipredisobanditeratorsKernSmoothlabelinglatticelavalifecyclelistenvlme4lmtestlubridatemagrittrMASSMatrixMatrixModelsmgcvmicrobenchmarkminqaModelMetricsmodelrmunsellnlmenloptrnnetnumDerivparallellypbkrtestpillarpkgconfigplyrpROCprodlimprogressrproxypurrrquantregR6rbibutilsRColorBrewerRcppRcppEigenRdpackrecipesreformulasreshape2rlangrpartrpart.plotsandwichscalesshapeSparseMsparsevctrsSQUAREMstringistringrsurvivaltibbletidyrtidyselecttimechangetimeDatetzdbutf8vctrsviridisLitewithrzoo

Inference

Rendered frominference.Rmdusingknitr::rmarkdownon Mar 17 2025.

Last update: 2025-02-15
Started: 2023-09-23

Tutorial

Rendered fromaggTrees-vignette.Rmdusingknitr::rmarkdownon Mar 17 2025.

Last update: 2025-02-15
Started: 2023-02-24