
Package: aggTrees (via r-universe)
August 27, 2024

Type Package

Title Aggregation Trees

Version 2.1.0

Description Nonparametric data-driven approach to discovering
heterogeneous subgroups in a selection-on-observables
framework. 'aggTrees' allows researchers to assess whether
there exists relevant heterogeneity in treatment effects by
generating a sequence of optimal groupings, one for each level
of granularity. For each grouping, we obtain point estimation
and inference about the group average treatment effects. Please
reference the use as Di Francesco (2022)
<doi:10.2139/ssrn.4304256>.

License MIT + file LICENSE

Encoding UTF-8

LazyData true

Depends R (>= 2.10)

RoxygenNote 7.2.3

Imports boot, broom, car, caret, estimatr, grf, rpart, rpart.plot,
stats, stringr

Suggests knitr, rmarkdown

VignetteBuilder knitr

URL https://riccardo-df.github.io/aggTrees/

BugReports https://github.com/riccardo-df/aggTrees/issues

Repository https://riccardo-df.r-universe.dev

RemoteUrl https://github.com/riccardo-df/aggtrees

RemoteRef HEAD

RemoteSha f59504d50a497e5b7363aa078508ab1c551673e0

1

https://doi.org/10.2139/ssrn.4304256
https://riccardo-df.github.io/aggTrees/
https://github.com/riccardo-df/aggTrees/issues

2 avg_characteristics_rpart

Contents
avg_characteristics_rpart . 2
balance_measures . 3
build_aggtree . 5
causal_ols_rpart . 9
dr_scores . 12
estimate_rpart . 13
expand_df . 15
get_leaves . 16
leaf_membership . 17
node_membership . 18
plot.aggTrees . 19
print.aggTrees . 20
print.aggTrees.inference . 21
sample_split . 23
subtree . 24
summary.aggTrees . 25

Index 26

avg_characteristics_rpart

Leaves Average Characteristics

Description

Computes the average characteristics of units in each leaf of an rpart object.

Usage

avg_characteristics_rpart(tree, X)

Arguments

tree An rpart object.

X Covariate matrix (no intercept).

Details

avg_characteristics_rpart regresses each covariate on a set of dummies denoting leaf member-
ship. This way, we get the average characteristics of units in each leaf, together with a standard error.

Leaves are ordered in increasing order of their predictions (from most negative to most positive).

Standard errors are estimated via the Eicker-Huber-White estimator.

balance_measures 3

Value

A list storing each regression as an lm_robust object.

Author(s)

Riccardo Di Francesco

References

• Di Francesco, R. (2022). Aggregation Trees. CEIS Research Paper, 546. doi:10.2139/
ssrn.4304256.

See Also

causal_ols_rpart, estimate_rpart

Examples

Generate data.
set.seed(1986)

n <- 1000
k <- 3

X <- matrix(rnorm(n * k), ncol = k)
colnames(X) <- paste0("x", seq_len(k))
D <- rbinom(n, size = 1, prob = 0.5)
mu0 <- 0.5 * X[, 1]
mu1 <- 0.5 * X[, 1] + X[, 2]
Y <- mu0 + D * (mu1 - mu0) + rnorm(n)

Construct a tree.
library(rpart)
tree <- rpart(Y ~ ., data = data.frame("Y" = Y, X), maxdepth = 2)

Compute average characteristics in each leaf.
results <- avg_characteristics_rpart(tree, X)
results

balance_measures Balance Measures

Description

Compute several balance measures to check whether the covariate distributions are balanced across
treatment arms.

https://doi.org/10.2139/ssrn.4304256
https://doi.org/10.2139/ssrn.4304256

4 balance_measures

Usage

balance_measures(X, D)

Arguments

X Covariate matrix (no intercept).

D Treatment assignment vector.

Details

For each covariate in X, balance_measures computes sample averages and standard deviations for
both treatment arms. Additionally, two balance measures are computed:

Norm. Diff. Normalized differences, computed as the differences in the means of each covariate
across treatment arms, normalized by the sum of the within-arm variances. They provide a
measure of the discrepancy between locations of the covariate distributions across treatment
arms.

Log S.D. Log ratio of standard deviations are computed as the logarithm of the ratio of the within-
arm standard deviations. They provide a measure of the discrepancy in the dispersion of the
covariate distributions across treatment arms.

Compilation of the LATEX code requires the following packages: booktabs, float, adjustbox.

Value

Prints LATEX code in the console.

Author(s)

Elena Dal Torrione, Riccardo Di Francesco

Examples

Generate data.
set.seed(1986)

n <- 1000
k <- 3

X <- matrix(rnorm(n * k), ncol = k)
colnames(X) <- paste0("x", seq_len(k))
D <- rbinom(n, size = 1, prob = 0.5)
mu0 <- 0.5 * X[, 1]
mu1 <- 0.5 * X[, 1] + X[, 2]
y <- mu0 + D * (mu1 - mu0) + rnorm(n)

Print table.
balance_measures(X, D)

build_aggtree 5

build_aggtree Aggregation Trees

Description

Nonparametric data-driven approach to discovering heterogeneous subgroups in a selection-on-
observables framework. The approach constructs a sequence of groupings, one for each level of
granularity. Groupings are nested and feature an optimality property. For each grouping, we obtain
point estimation and standard errors for the group average treatment effects (GATEs) using debiased
machine learning procedures. Additionally, we assess whether systematic heterogeneity is found
by testing the hypotheses that the differences in the GATEs across all pairs of groups are zero.
Finally, we investigate the driving mechanisms of effect heterogeneity by computing the average
characteristics of units in each group.

Usage

build_aggtree(
Y_tr,
D_tr,
X_tr,
Y_hon = NULL,
D_hon = NULL,
X_hon = NULL,
cates_tr = NULL,
cates_hon = NULL,
method = "aipw",
scores = NULL,
...

)

inference_aggtree(object, n_groups, boot_ci = FALSE, boot_R = 2000)

Arguments

Y_tr Outcome vector for training sample.

D_tr Treatment vector for training sample.

X_tr Covariate matrix (no intercept) for training sample.

Y_hon Outcome vector for honest sample.

D_hon Treatment vector for honest sample.

X_hon Covariate matrix (no intercept) for honest sample.

cates_tr Optional, predicted CATEs for training sample. If not provided by the user,
CATEs are estimated internally via a causal_forest.

cates_hon Optional, predicted CATEs for honest sample. If not provided by the user,
CATEs are estimated internally via a causal_forest.

method Either "raw" or "aipw", controls how node predictions are computed.

6 build_aggtree

scores Optional, vector of scores to be used in computing node predictions. Useful
to save computational time if scores have already been estimated. Ignored if
method == "raw".

... Further arguments from rpart.control.

object An aggTrees object.

n_groups Number of desired groups.

boot_ci Logical, whether to compute bootstrap confidence intervals.

boot_R Number of bootstrap replications. Ignored if boot_ci == FALSE.

Details

Aggregation trees are a three-step procedure. First, the conditional average treatment effects (CATEs)
are estimated using any estimator. Second, a tree is grown to approximate the CATEs. Third, the
tree is pruned to derive a nested sequence of optimal groupings, one for each granularity level. For
each level of granularity, we can obtain point estimation and inference about the GATEs.

To implement this methodology, the user can rely on two core functions that handle the various
steps.

Constructing the Sequence of Groupings:
build_aggtree constructs the sequence of groupings (i.e., the tree) and estimate the GATEs in
each node. The GATEs can be estimated in several ways. This is controlled by the method ar-
gument. If method == "raw", we compute the difference in mean outcomes between treated and
control observations in each node. This is an unbiased estimator in randomized experiment. If
method == "aipw", we construct doubly-robust scores and average them in each node. This is
unbiased also in observational studies. Honest regression forests and 5-fold cross fitting are used
to estimate the propensity score and the conditional mean function of the outcome (unless the user
specifies the argument scores).

The user can provide a vector of the estimated CATEs via the cates_tr and cates_hon argu-
ments. If no CATEs are provided, these are estimated internally via a causal_forest using only
the training sample, that is, Y_tr, D_tr, and X_tr.

GATEs Estimation and Inference:
inference_aggtree takes as input an aggTrees object constructed by build_aggtree. Then,
for the desired granularity level, chosen via the n_groups argument, it provides point estimation
and standard errors for the GATEs. Additionally, it performs some hypothesis testing to assess
whether we find systematic heterogeneity and computes the average characteristics of the units in
each group to investigate the driving mechanisms.

Point estimates and standard errors for the GATEs:
GATEs and their standard errors are obtained by fitting an appropriate linear model. If method
== "raw", we estimate via OLS the following:

Yi =

|T |∑
l=1

Li,lγl +

|T |∑
l=1

Li,lDiβl + ϵi

build_aggtree 7

with L_{i, l} a dummy variable equal to one if the i-th unit falls in the l-th group, and |T| the
number of groups. If the treatment is randomly assigned, one can show that the betas identify the
GATE of each group. However, this is not true in observational studies due to selection into treat-
ment. In this case, the user is expected to use method == "aipw" when calling build_aggtree.
In this case, inference_aggtree uses the scores in the following regression:

scorei =

|T |∑
l=1

Li,lβl + ϵi

This way, betas again identify the GATEs.

Regardless of method, standard errors are estimated via the Eicker-Huber-White estimator.

If boot_ci == TRUE, the routine also computes asymmetric bias-corrected and accelerated 95%
confidence intervals using 2000 bootstrap samples. Particularly useful when the honest sample
is small-ish.

Hypothesis testing:
inference_aggtree uses the standard errors obtained by fitting the linear models above to test
the hypotheses that the GATEs are different across all pairs of leaves. Here, we adjust p-values
to account for multiple hypotheses testing using Holm’s procedure.

Average Characteristics:
inference_aggtree regresses each covariate on a set of dummies denoting group membership.
This way, we get the average characteristics of units in each leaf, together with a standard error.
Leaves are ordered in increasing order of their predictions (from most negative to most positive).
Standard errors are estimated via the Eicker-Huber-White estimator.

Caution on Inference:
Regardless of the chosen method, both functions estimate the GATEs, the linear models, and the
average characteristics of units in each group using only observations in the honest sample. If
the honest sample is empty (this happens when the user either does not provide Y_hon, D_hon,
and X_hon or sets them to NULL), the same data used to construct the tree are used to estimate the
above quantities. This is fine for prediction but invalidates inference.

Value

build_aggtree returns an aggTrees object.

inference_aggtree returns an aggTrees.inference object, which in turn contains the aggTrees
object used in the call.

Author(s)

Riccardo Di Francesco

References

• Di Francesco, R. (2022). Aggregation Trees. CEIS Research Paper, 546. doi:10.2139/
ssrn.4304256.

https://doi.org/10.2139/ssrn.4304256
https://doi.org/10.2139/ssrn.4304256

8 build_aggtree

See Also

plot.aggTrees print.aggTrees.inference

Examples

Generate data.
set.seed(1986)

n <- 1000
k <- 3

X <- matrix(rnorm(n * k), ncol = k)
colnames(X) <- paste0("x", seq_len(k))
D <- rbinom(n, size = 1, prob = 0.5)
mu0 <- 0.5 * X[, 1]
mu1 <- 0.5 * X[, 1] + X[, 2]
Y <- mu0 + D * (mu1 - mu0) + rnorm(n)

Training-honest sample split.
honest_frac <- 0.5
splits <- sample_split(length(Y), training_frac = (1 - honest_frac))
training_idx <- splits$training_idx
honest_idx <- splits$honest_idx

Y_tr <- Y[training_idx]
D_tr <- D[training_idx]
X_tr <- X[training_idx,]

Y_hon <- Y[honest_idx]
D_hon <- D[honest_idx]
X_hon <- X[honest_idx,]

Construct sequence of groupings. CATEs estimated internally.
groupings <- build_aggtree(Y_tr, D_tr, X_tr, # Training sample.

Y_hon, D_hon, X_hon) # Honest sample.

Alternatively, we can estimate the CATEs and pass them.
library(grf)
forest <- causal_forest(X_tr, Y_tr, D_tr) # Use training sample.
cates_tr <- predict(forest, X_tr)$predictions
cates_hon <- predict(forest, X_hon)$predictions

groupings <- build_aggtree(Y_tr, D_tr, X_tr, # Training sample.
Y_hon, D_hon, X_hon, # Honest sample.
cates_tr, cates_hon) # Predicted CATEs.

We have compatibility with generic S3-methods.
summary(groupings)
print(groupings)
plot(groupings) # Try also setting 'sequence = TRUE'.

To predict, do the following.

causal_ols_rpart 9

tree <- subtree(groupings$tree, cv = TRUE) # Select by cross-validation.
head(predict(tree, data.frame(X_hon)))

Inference with 4 groups.
results <- inference_aggtree(groupings, n_groups = 4)

summary(results$model) # Coefficient of leafk is GATE in k-th leaf.

results$gates_diff_pairs$gates_diff # GATEs differences.
results$gates_diff_pairs$holm_pvalues # leaves 1-2 not statistically different.

LATEX.
print(results, table = "diff")
print(results, table = "avg_char")

causal_ols_rpart Estimation and Inference about the GATEs with rpart Objects

Description

Obtains point estimates and standard errors for the group average treatment effects (GATEs), where
groups correspond to the leaves of an rpart object. Additionally, performs some hypothesis testing.

Usage

causal_ols_rpart(
tree,
Y,
D,
X,
method = "aipw",
scores = NULL,
boot_ci = FALSE,
boot_R = 2000

)

Arguments

tree An rpart object.
Y Outcome vector.
D Treatment assignment vector
X Covariate matrix (no intercept).
method Either "raw" or "aipw", defines the outcome used in the regression.
scores Optional, vector of scores to be used in the regression. Useful to save computa-

tional time if scores have already been estimated. Ignored if method == "raw".
boot_ci Logical, whether to compute bootstrap confidence intervals.
boot_R Number of bootstrap replications. Ignored if boot_ci == FALSE.

10 causal_ols_rpart

Details

Point estimates and standard errors for the GATEs:
The GATEs and their standard errors are obtained by fitting an appropriate linear model. If method
== "raw", we estimate via OLS the following:

Yi =

|T |∑
l=1

Li,lγl +

|T |∑
l=1

Li,lDiβl + ϵi

with L_{i, l} a dummy variable equal to one if the i-th unit falls in the l-th leaf of tree, and
|T| the number of groups. If the treatment is randomly assigned, one can show that the betas
identify the GATE in each leaf. However, this is not true in observational studies due to selection
into treatment. In this case, the user is expected to use method == "aipw" to run the following
regression:

scorei =

|T |∑
l=1

Li,lβl + ϵi

where score_i are doubly-robust scores constructed via honest regression forests and 5-fold cross
fitting (unless the user specifies the argument scores). This way, betas again identify the GATEs.

Regardless of method, standard errors are estimated via the Eicker-Huber-White estimator.

If boot_ci == TRUE, the routine also computes asymmetric bias-corrected and accelerated 95%
confidence intervals using 2000 bootstrap samples.

If tree consists of a root only, causal_ols_rpart regresses y on a constant and D if method ==
"raw", or regresses the doubly-robust scores on a constant if method == "aipw". This way, we
get an estimate of the overall average treatment effect.

Hypothesis testing:
causal_ols_rpart uses the standard errors obtained by fitting the linear models above to test the
hypotheses that the GATEs are different across all pairs of leaves. Here, we adjust p-values to
account for multiple hypotheses testing using Holm’s procedure.

Caution on Inference:
"honesty" is a necessary requirement to get valid inference. Thus, observations in Y, D, and X must
not have been used to construct the tree and the scores.

Value

A list storing:

model The model fitted to get point estimates and standard errors for the GATEs, as an
lm_robust object.

causal_ols_rpart 11

gates_diff_pairs

Results of testing whether GATEs differ across all pairs of leaves. This is a
list storing GATEs differences and p-values adjusted using Holm’s procedure
(check p.adjust). NULL if the tree consists of a root only.

boot_ci Bootstrap confidence intervals (this is an empty list if boot_ci == FALSE.

scores Vector of doubly robust scores. NULL if method == 'raw'.

Author(s)

Riccardo Di Francesco

References

• Di Francesco, R. (2022). Aggregation Trees. CEIS Research Paper, 546. doi:10.2139/
ssrn.4304256.

See Also

estimate_rpart avg_characteristics_rpart

Examples

Generate data.
set.seed(1986)

n <- 1000
k <- 3

X <- matrix(rnorm(n * k), ncol = k)
colnames(X) <- paste0("x", seq_len(k))
D <- rbinom(n, size = 1, prob = 0.5)
mu0 <- 0.5 * X[, 1]
mu1 <- 0.5 * X[, 1] + X[, 2]
Y <- mu0 + D * (mu1 - mu0) + rnorm(n)

Split the sample.
splits <- sample_split(length(Y), training_frac = 0.5)
training_idx <- splits$training_idx
honest_idx <- splits$honest_idx

Y_tr <- Y[training_idx]
D_tr <- D[training_idx]
X_tr <- X[training_idx,]

Y_hon <- Y[honest_idx]
D_hon <- D[honest_idx]
X_hon <- X[honest_idx,]

Construct a tree using training sample.
library(rpart)
tree <- rpart(Y ~ ., data = data.frame("Y" = Y_tr, X_tr), maxdepth = 2)

https://doi.org/10.2139/ssrn.4304256
https://doi.org/10.2139/ssrn.4304256

12 dr_scores

Estimate GATEs in each node (internal and terminal) using honest sample.
results <- causal_ols_rpart(tree, Y_hon, D_hon, X_hon, method = "raw")

summary(results$model) # Coefficient of leafk:D is GATE in k-th leaf.

results$gates_diff_pair$gates_diff # GATEs differences.
results$gates_diff_pair$holm_pvalues # leaves 1-2 and 3-4 not statistically different.

dr_scores Doubly-Robust Scores

Description

Constructs doubly-robust scores via K-fold cross-fitting.

Usage

dr_scores(Y, D, X, k = 5)

Arguments

Y Outcome vector.

D Treatment assignment vector.

X Covariate matrix (no intercept).

k Number of folds.

Details

Honest regression forests are used to estimate the propensity score and the conditional mean func-
tion of the outcome.

Value

A vector of scores.

Author(s)

Riccardo Di Francesco

estimate_rpart 13

estimate_rpart GATE Estimation with rpart Objects

Description

Replaces node predictions of an rpart object using external data to estimate the group average
treatment effects (GATEs).

Usage

estimate_rpart(tree, Y, D, X, method = "aipw", scores = NULL)

Arguments

tree An rpart object.

Y Outcome vector.

D Treatment assignment vector.

X Covariate matrix (no intercept).

method Either "raw" or "aipw", controls how node predictions are replaced.

scores Optional, vector of scores to be used in replacing node predictions. Useful
to save computational time if scores have already been estimated. Ignored if
method == "raw".

Details

If method == "raw", estimate_rpart replaces node predictions with the differences between the
sample average of the observed outcomes of treated units and the sample average of the observed
outcomes of control units in each node, which is an unbiased estimator of the GATEs if the assign-
ment to treatment is randomized.

If method == "aipw", estimate_rpart replaces node predictions with sample averages of doubly-
robust scores in each node. This is a valid estimator of the GATEs in observational studies. Honest
regression forests and 5-fold cross fitting are used to estimate the propensity score and the condi-
tional mean function of the outcome (unless the user specifies the argument scores).

estimate_rpart allows the user to implement "honest" estimation. If observations in y, D and X
have not been used to construct the tree, then the new predictions are honest in the sense of Athey
and Imbens (2016). To get standard errors for the tree’s estimates, please use causal_ols_rpart.

Value

A tree with node predictions replaced, as an rpart object, and the scores (if method == "raw", this
is NULL).

14 estimate_rpart

Author(s)

Riccardo Di Francesco

References

• Di Francesco, R. (2022). Aggregation Trees. CEIS Research Paper, 546. doi:10.2139/
ssrn.4304256.

See Also

causal_ols_rpart avg_characteristics_rpart

Examples

Generate data.
set.seed(1986)

n <- 1000
k <- 3

X <- matrix(rnorm(n * k), ncol = k)
colnames(X) <- paste0("x", seq_len(k))
D <- rbinom(n, size = 1, prob = 0.5)
mu0 <- 0.5 * X[, 1]
mu1 <- 0.5 * X[, 1] + X[, 2]
Y <- mu0 + D * (mu1 - mu0) + rnorm(n)

Split the sample.
splits <- sample_split(length(Y), training_frac = 0.5)
training_idx <- splits$training_idx
honest_idx <- splits$honest_idx

Y_tr <- Y[training_idx]
D_tr <- D[training_idx]
X_tr <- X[training_idx,]

Y_hon <- Y[honest_idx]
D_hon <- D[honest_idx]
X_hon <- X[honest_idx,]

Construct a tree using training sample.
library(rpart)
tree <- rpart(Y ~ ., data = data.frame("Y" = Y_tr, X_tr), maxdepth = 2)

Estimate GATEs in each node (internal and terminal) using honest sample.
new_tree <- estimate_rpart(tree, Y_hon, D_hon, X_hon, method = "raw")
new_tree$tree

https://doi.org/10.2139/ssrn.4304256
https://doi.org/10.2139/ssrn.4304256

expand_df 15

expand_df Covariate Matrix Expansion

Description

Expands the covariate matrix, adding interactions and polynomials. This is particularly useful for
penalized regressions.

Usage

expand_df(X, int_order = 2, poly_order = 4, threshold = 0)

Arguments

X Covariate matrix (no intercept).

int_order Order of interactions to be added. Set equal to one if no interactions are desired.

poly_order Order of the polynomials to be added. Set equal to one if no polynomials are
desired.

threshold Drop binary variables representing less than threshold% of the population.
Useful to speed up computation.

Details

expand_df assumes that categorical variables are coded as factors. Also, no missing values are
allowed.

expand_df uses model.matrix to expand factors to a set of dummy variables. Then, it identifies
continuous covariates as those not having 0 and 1 as unique values.

expand_df first introduces all the int_order-way interactions between the variables (using the
expanded set of dummies), and then adds poly_order-order polynomials for continuous covariates.

Value

The expanded covariate matrix, as a data frame.

Author(s)

Riccardo Di Francesco

16 get_leaves

get_leaves Number of Leaves

Description

Extracts the number of leaves of an rpart object.

Usage

get_leaves(tree)

Arguments

tree An rpart object.

Value

The number of leaves.

Author(s)

Riccardo Di Francesco

See Also

subtree node_membership leaf_membership

Examples

Generate data.
set.seed(1986)

n <- 3000
k <- 3

X <- matrix(rnorm(n * k), ncol = k)
colnames(X) <- paste0("x", seq_len(k))

Y <- exp(X[, 1]) + 2 * X[, 2] * X[, 2] > 0 + rnorm(n)

Construct tree.
library(rpart)
tree <- rpart(Y ~ ., data = data.frame(Y, X))

Extract number of leaves.
n_leaves <- get_leaves(tree)
n_leaves

leaf_membership 17

leaf_membership Leaf Membership

Description

Constructs a variable that encodes in which leaf of an rpart object the units in a given data frame
fall.

Usage

leaf_membership(tree, X)

Arguments

tree An rpart object.

X Covariate matrix (no intercept).

Value

A factor whose levels denote in which leaf each unit falls. Leaves are ordered in increasing order
of their predictions (from most negative to most positive).

Author(s)

Riccardo Di Francesco

See Also

subtree node_membership get_leaves

Examples

Generate data.
set.seed(1986)

n <- 3000
k <- 3

X <- matrix(rnorm(n * k), ncol = k)
colnames(X) <- paste0("x", seq_len(k))

Y <- exp(X[, 1]) + 2 * X[, 2] * X[, 2] > 0 + rnorm(n)

Construct tree.
library(rpart)
tree <- rpart(Y ~ ., data = data.frame(Y, X))

Extract number of leaves.
leaves_factor <- leaf_membership(tree, X)

18 node_membership

head(leaves_factor)

node_membership Node Membership

Description

Constructs a binary variable that encodes whether each observation falls into a particular node of
an rpart object.

Usage

node_membership(tree, X, node)

Arguments

tree An rpart object.

X Covariate matrix (no intercept).

node Number of node.

Value

Logical vector denoting whether each observation in X falls into node.

Author(s)

Riccardo Di Francesco

See Also

subtree leaf_membership get_leaves

Examples

Generate data.
set.seed(1986)

n <- 3000
k <- 3

X <- matrix(rnorm(n * k), ncol = k)
colnames(X) <- paste0("x", seq_len(k))

Y <- exp(X[, 1]) + 2 * X[, 2] * X[, 2] > 0 + rnorm(n)

Construct tree.
library(rpart)
tree <- rpart(Y ~ ., data = data.frame(Y, X))

plot.aggTrees 19

Extract number of leaves.
is_in_third_node <- node_membership(tree, X, 3)
head(is_in_third_node)

plot.aggTrees Plot Method for aggTrees Objects

Description

Plots an aggTrees object.

Usage

S3 method for class 'aggTrees'
plot(x, leaves = get_leaves(x$tree), sequence = FALSE, ...)

Arguments

x An aggTrees object.

leaves Number of leaves of the desired tree. This can be used to plot subtrees.

sequence If TRUE, the whole sequence of optimal groupings is displayed in a short anima-
tion.

... Further arguments from prp.

Details

Nodes are colored using a diverging palette. Nodes with predictions smaller than the ATE (i.e.,
the root prediction) are colored in blue shades, and nodes with predictions larger than the ATE
are colored in red shades. Moreover, predictions that are more distant in absolute value from the
ATE get darker shades. This way, we have an immediate understanding of the groups with extreme
GATEs.

Value

Plots an aggTrees object.

Author(s)

Riccardo Di Francesco

References

• Di Francesco, R. (2022). Aggregation Trees. CEIS Research Paper, 546. doi:10.2139/
ssrn.4304256.

https://doi.org/10.2139/ssrn.4304256
https://doi.org/10.2139/ssrn.4304256

20 print.aggTrees

See Also

build_aggtree, inference_aggtree

Examples

Generate data.
set.seed(1986)

n <- 1000
k <- 3

X <- matrix(rnorm(n * k), ncol = k)
colnames(X) <- paste0("x", seq_len(k))
D <- rbinom(n, size = 1, prob = 0.5)
mu0 <- 0.5 * X[, 1]
mu1 <- 0.5 * X[, 1] + X[, 2]
Y <- mu0 + D * (mu1 - mu0) + rnorm(n)

Training-honest sample split.
honest_frac <- 0.5
splits <- sample_split(length(Y), training_frac = (1 - honest_frac))
training_idx <- splits$training_idx
honest_idx <- splits$honest_idx

Y_tr <- Y[training_idx]
D_tr <- D[training_idx]
X_tr <- X[training_idx,]

Y_hon <- Y[honest_idx]
D_hon <- D[honest_idx]
X_hon <- X[honest_idx,]

Construct sequence of groupings. CATEs estimated internally.
groupings <- build_aggtree(Y_tr, D_tr, X_tr,

Y_hon, D_hon, X_hon)

Plot.
plot(groupings)
plot(groupings, leaves = 3)
plot(groupings, sequence = TRUE)

print.aggTrees Print Method for aggTrees Objects

Description

Prints an aggTrees object.

print.aggTrees.inference 21

Usage

S3 method for class 'aggTrees'
print(x, ...)

Arguments

x aggTrees object.

... Further arguments passed to or from other methods.

Value

Prints an aggTrees object.

Author(s)

Riccardo Di Francesco

References

• Di Francesco, R. (2022). Aggregation Trees. CEIS Research Paper, 546. doi:10.2139/
ssrn.4304256.

See Also

build_aggtree, inference_aggtree

print.aggTrees.inference

Print Method for aggTrees.inference Objects

Description

Prints an aggTrees.inference object.

Usage

S3 method for class 'aggTrees.inference'
print(x, table = "avg_char", ...)

Arguments

x aggTrees.inference object.

table Either "avg_char" or "diff", controls which table must be produced.

... Further arguments passed to or from other methods.

https://doi.org/10.2139/ssrn.4304256
https://doi.org/10.2139/ssrn.4304256

22 print.aggTrees.inference

Details

A description of each table is provided in its caption.

Some covariates may feature zero variation in some leaf. This generally happens to dummy vari-
ables used to split some nodes. In this case, when table == "avg_char" a warning message is
produced displaying the names of the covariates with zero variation in one or more leaves. The user
should correct the table by removing the associated standard errors.

Compilation of the LATEX code requires the following packages: booktabs, float, adjustbox,
multirow.

Value

Prints LATEX code.

Author(s)

Riccardo Di Francesco

References

• Di Francesco, R. (2022). Aggregation Trees. CEIS Research Paper, 546. doi:10.2139/
ssrn.4304256.

See Also

build_aggtree, inference_aggtree

Examples

Generate data.
set.seed(1986)

n <- 1000
k <- 3

X <- matrix(rnorm(n * k), ncol = k)
colnames(X) <- paste0("x", seq_len(k))
D <- rbinom(n, size = 1, prob = 0.5)
mu0 <- 0.5 * X[, 1]
mu1 <- 0.5 * X[, 1] + X[, 2]
Y <- mu0 + D * (mu1 - mu0) + rnorm(n)

Training-honest sample split.
honest_frac <- 0.5
splits <- sample_split(length(Y), training_frac = (1 - honest_frac))
training_idx <- splits$training_idx
honest_idx <- splits$honest_idx

Y_tr <- Y[training_idx]

https://doi.org/10.2139/ssrn.4304256
https://doi.org/10.2139/ssrn.4304256

sample_split 23

D_tr <- D[training_idx]
X_tr <- X[training_idx,]

Y_hon <- Y[honest_idx]
D_hon <- D[honest_idx]
X_hon <- X[honest_idx,]

Construct sequence of groupings. CATEs estimated internally.
groupings <- build_aggtree(Y_tr, D_tr, X_tr,

Y_hon, D_hon, X_hon)

Analyze results with 4 groups.
results <- inference_aggtree(groupings, n_groups = 4)

Print results.
print(results, table = "diff")
print(results, table = "avg_char")

sample_split Sample Splitting

Description

Splits the sample into training and honest subsamples.

Usage

sample_split(n, training_frac = 0.5)

Arguments

n Size of the sample to be split.

training_frac Fraction of units for the training sample.

Value

A list storing the indexes for the two different subsamples.

Author(s)

Riccardo Di Francesco

24 subtree

subtree Subtree

Description

Extracts a subtree with a user-specified number of leaves from an rpart object.

Usage

subtree(tree, leaves = NULL, cv = FALSE)

Arguments

tree An rpart object.

leaves Number of leaves of the desired subtree.

cv If TRUE, leaves is ignored and a cross-validation criterion is used to select a
partition.

Value

The subtree, as an rpart object.

Author(s)

Riccardo Di Francesco

See Also

get_leaves node_membership leaf_membership

Examples

Generate data.
set.seed(1986)

n <- 3000
k <- 3

X <- matrix(rnorm(n * k), ncol = k)
colnames(X) <- paste0("x", seq_len(k))

Y <- exp(X[, 1]) + 2 * X[, 2] * X[, 2] > 0 + rnorm(n)

Construct tree.
library(rpart)
tree <- rpart(Y ~ ., data = data.frame(Y, X), cp = 0)

Extract subtree.
sub_tree <- subtree(tree, leaves = 4)

summary.aggTrees 25

sub_tree_cv <- subtree(tree, cv = TRUE)

summary.aggTrees Summary Method for aggTrees Objects

Description

Summarizes an aggTrees object.

Usage

S3 method for class 'aggTrees'
summary(object, ...)

Arguments

object aggTrees object.

... Further arguments passed to or from other methods.

Value

Prints the summary of an aggTrees object.

Author(s)

Riccardo Di Francesco

References

• Di Francesco, R. (2022). Aggregation Trees. CEIS Research Paper, 546. doi:10.2139/
ssrn.4304256.

See Also

build_aggtree, inference_aggtree

https://doi.org/10.2139/ssrn.4304256
https://doi.org/10.2139/ssrn.4304256

Index

avg_characteristics_rpart, 2, 2, 11, 14

balance_measures, 3
build_aggtree, 5, 6, 7, 20–22, 25

causal_forest, 5, 6
causal_ols_rpart, 3, 9, 10, 13, 14

dr_scores, 12

estimate_rpart, 3, 11, 13
expand_df, 15

get_leaves, 16, 17, 18, 24

inference_aggtree, 6, 7, 20–22, 25
inference_aggtree (build_aggtree), 5

leaf_membership, 16, 17, 18, 24
lm_robust, 3, 10

model.matrix, 15

node_membership, 16, 17, 18, 24

p.adjust, 11
plot.aggTrees, 8, 19
print.aggTrees, 20
print.aggTrees.inference, 8, 21
prp, 19

rpart, 2, 9, 13, 16–18, 24
rpart.control, 6

sample_split, 23
subtree, 16–18, 24
summary.aggTrees, 25

26

	avg_characteristics_rpart
	balance_measures
	build_aggtree
	causal_ols_rpart
	dr_scores
	estimate_rpart
	expand_df
	get_leaves
	leaf_membership
	node_membership
	plot.aggTrees
	print.aggTrees
	print.aggTrees.inference
	sample_split
	subtree
	summary.aggTrees
	Index

